

Shruti Malik¹, Pijus Makauskas¹, Ravi Sharma² and Mayur Pal¹

¹ Kaunas University of Technology, Dept. of Mathematical Modelling, Kaunas, Lithuania

² Dept. of Earth Sciences, Indian Institute of Technology Roorkee, India

OUTLINE

- Introduction
- Motivation
- Objectives
- Laboratory Measurements
- Sample Description
- Methodology
- Results
- Conclusion and Future Work
- Acknowledgement
- References

BALTIC BASIN

-600

-800

- Extends in countries such as Lithuania, Latvia, and Estonia;
- It has several hydrocarbon and deep saline reservoirs in offshore and onshore settings.

.00

© Geological Survey Of Denmark And Greenland

Mt/v

DIGITAL ROCK PHYSICS (DRP)

MOTIVATION

- CO₂ emissions are on rise globally and there is an emergent need to curb carbon emissions to mitigate the risks associated with climate change.
- Carbon Capture, Utilization and Storage (CCUS) is considered one of the effective methods.
- All fluid storage and flow processes in the subsurface lithological formations occur essentially at pore scale level; therefore, it is imperative to have a closer look at the processes and physics of storing CO₂ over long periods and its impact on the integrity of the lithological formation.
- Digital Rock Physics offers a non-destructive and efficient method for investigating pore-scale processes and characterizing a reservoir in terms of long-term CO₂ storage.

OBJECTIVES

- To understand the deep saline reservoirs of Lithuania using Micro Xray CT scanned images.
- To estimate the petrophysical parameters (porosity and permeability) of core sample.
 - Use machine learning methods to extract porosity.
 - Carry out lattice Boltzmann simulation to extract permeabilities from digital models.
- To extract a representative element volume (REV) of the core samples.
- To benchmark the methodology adopted on analogue samples, enabling its further application on reservoir samples.
- To assess the storage capacity of the saline aquifers of Lithuania.

LABORATORY MEASUREMENTS

- Scanning of the core samples: Micro Xray-Computed Tomography (MXCT) scans were obtained using Skyscan 1275 © Bruker.
- Scanning resolution: The samples are scanned at two different resolutions, low resolution (22um) and high resolution (8um).

Cube extracted for high resolution scanning (8um)

Core sample for low resolution scanning (22um)

Figure: Instrument used for scanning core samples

SAMPLE DESCRIPTION: SAMPLE SET 1

 Sandstone samples, primarily composed of quartz as the dominant mineralogy with minor occurrences of clay minerals, analogous to Lithuanian reservoirs.

Sample name	Porosity (%)	Permeability (mD)
S1	21.60	275
S2	19.90	62
S3	20.22	327

SAMPLE DESCRIPTION: SAMPLE SET 2

Sandstone samples from actual Lithuanian reservoirs

Reservoir Type	Reservoir Name	Sample Name	Porosity (%)	Permeability (mD)
Deep saline	Syderiai	S 3	16	246
aquifer	Vaskai	V4	22	1308

Figure: (a) A core sample with length = 2.5inch and diameter = 1.5inch and, (b) raw 3D volume generated from MXCT imaging at resolution of 22um. The 3D volume size is 941 X 941 X 601 pixels.

Figure: (a) A sample cube of 2cm, (b) raw 3D volume generated from MXCT imaging at resolution of 8um. The 3D volume size is 1020 X 1020 X 1014 pixels.

S3

S1

RESULTS: IMAGE PROCESSING

Original Image

Contrast Limited Adaptive Histogram Equalization (CLAHE) adjusted Image

SEGMENTATION: K-Means Algorithm

The objective function that is minimized is given by:

$$Z = \sum_{i=1}^{n} \sum_{j=1}^{k} \|x^{(i)} - C_j\|^2$$

Where, $||x^{(i)} - C_j||^2$ is the Euclidean distance between the data point x(i) and cluster centroid C*j*.

$$C_j = \frac{1}{n} \sum_{i=1}^n x_j^{(i)}$$

Where *n* is the number of data points in the *jth* cluster and $x_i^{(i)}$ is the *i*th data point.

RESULTS: SAMPLE SET1

Sample	Porosity using K-means algorithm (%)	Laboratory measured porosity (%)	Error (%)
S 1	19.98	21.6	7.5
S2	19.70	19.9	1.0
S3	19.99	20.22	1.1

Table: Benchmarking of the porosity values with laboratory measured values

RESULTS: SAMPLE SET2

Sample Type	Sample	Porosity using K- means algorithm (%)	Laboratory measured porosity (%)	Error (%)
Core	S 3	14.38	16	10
(22µm)	V4	19.74	22	10
Cube	S3	15.17	16	5
(8µm)	V4	23	22	4.5

Table: Porosity values of Lithuanian samples compared with laboratory measured values

RESULTS: EXTRACTION OF SUB-VOLUMES

Figure: Illustration of the sub-volume extraction for fluid flow simulation

LATTICE BOLTZMANN METHOD

- In the LBM, fluid is considered as a collection of particles that are represented by a probability distribution function at each discrete lattice node. The Lattice Boltzmann equation updates the probability distribution function at each time step and from this the velocities are calculated.
- LBM has 2 main steps: collision and streaming

LATTICE BOLTZMANN METHOD (CONTD.)

Figure: Binary image, where black area represents grains and white area representing the pores(above) and creation of lattice nodes at the center of each white pixel(bottom).

RESULTS (CONTD.)

Figure: From left to right: Raw core sample, Scanned 3D volume, its segmented 3D volume and LBM simulated output, where blue thread like distribution shows the fluid flow through the pore space.

RESULTS: PERMEABILITY ESTIMATION (SAMPLE SET1)

20

Sample	Sub-volumes (201X201X201)	Permeability using LBM (mD)	Average permeability (mD)	Laboratory (mD)	Error (%)	
	1	282				
C1	2	307	217	275	15	
51	3	360	517	275		
	4	320				
	1	83			47	
53	2	105	01	62		
52	3	100	91			
	4	77				
	1	445				
C 2	2	334	270	227	12	
53	3	370] 370	321	15	
	4	330				

RESULTS: PERMEABILITY ESTIMATION (SAMPLE SET2)

21

Sample	Sub-volumes (251X251X251)	Permeability using LBM (mD)	Average permeability (mD)	Laboratory (mD)	Error (%)	
	1	244				
	2	326				
52	3	298	272	246	10.5	
55	4	315				
	5	236				
	6	211				
	1	1129			1.2	
	2	1668				
V4	3	1308	1264	1200		
	4	1209	1304	1509	4.2	
	5	1609				
	6	1259				

RESULTS: PERMEABILITY ESTIMATION (SAMPLE SET2)

Sample	Sub-volumes (251X251X251)	Permeability using LBM (mD)	Average permeability (mD)	Laboratory (mD)	Error (%)
	1	288			
S3	2	320	260	246	9.0
Cube	3	187	209	240	
	4	280			
	1	1347			0.2
V4 Cube	2	1304	1212	1200	
	3	1269	1515	1309	0.3
	4	1332			

METHODOLOGY ADOPTED

METHODOLOGY	(CONTD.)
-------------	----------

(2) Static model Static Mechanistic Models STOLIP Tomado Static Static Static Static Static Mechanistic Models Static Stati	

Syderiai				Vaskai			
	Low	Mid	High	Low	Mid	High	
Porosity	0.144	0.16	0.208	0.207	0.23	0.299	
Perm X	360	400	520	252	280	364	
Perm Y	360	400	520	252	280	364	
Perm Z	119.7	133	172.9	84	93.33	121.33	
Thickness	51.3	57	74.1	51.3	57	74.1	
NTG	0.675	0.75	0.975	0.45	0.5	0.65	
AREA	23.4	26	33.8	11.07	12.3	15.99	

Model 1

Model 2

Model 3

Model 4

Model - N

kauno technologijos universitetas

RE-EVALUATION METHODOLOGY

Syderiai					Vaskai	
	Nx	Ny	Nz	Nx	Ny	Nz
	50	50	25	50	50	25
Lx	4837.3	5099.0	5813.7	3327.1	3507.1	3998.7
Ly	4837.3	5099.0	5813.7	3327.1	3507.1	3998.7
Lz	51.3	57	74.1	51.3	57	74.1
Dx	96.7	101.9	116.2	66.5	70.1	79.9
Dy	96.7	101.9	116.2	66.5	70.1	79.9
Dz	2.052	2.28	2.96	2.05	2.28	2.96
	Low	Mid	High	Low	Mid	High

Model dimensions Uncertainty high/mid/low

CONCLUSION

- Carbon Capture and Storage (CCS) is a potent method to reduce greenhouse gas emissions by capturing and storing carbon dioxide in subsurface reservoirs.
- Image based 3D quantification of the porosity and permeability helps to understand the distribution of pore space and the flow behavior in presence of different fluids, respectively.
- The porosity and permeability values agreed with the laboratory measured values. The relatively high percentage of error in permeability does not have a significant impact since we are considering the order of magnitude, which aligns accordingly.
- Digital Rock Physics can help in analyzing the reservoir behavior when injected with CO2 and in assessing the long-term storage capacity of a reservoir.

CONCLUSION (CONTD.)

- Large CO₂ storage potential exists within Lithuanian Cambrian reservoirs.
- 3D mechanistic models are used to evaluate the storage potential of the two main saline aquifers.
- The 3D numerical simulation results obtained using CO2SOL modelling option used in T-navigator combined with uncertainty modelling principles.
- Modelling results show that:
 - All three deep saline aquifers' combined capacity of CO_2 storage ranges from 347Mt 1589Mt of

FUTURE WORK

- This work can be extended to explore the associated implications for various aspects of long-term storage such as geochemical reactions, and geo-mechanical behavior of the rock which shall further aid in identification of reservoir(s) wherein sequestration possibilities can be reliably explored.
- Incorporating different subsurface uncertainties is possible during flow simulations to understand the impact of subsurface heterogeneity on fluid flow.

ACKNOWLEDGEMENT

- Lithuanian Research Council Funding for postdoctoral research fund Proposal registration No. P-PD-22-022-PATIKSLINTA.
- UAB Minijos Nafta for sharing data for reservoir modeling and simulation.

REFERENCES

1. Shogenova, S. Šliaupa, K. Shogenov, R. Vaher and R. Šliaupienė, "Geological Storage of CO2 – Prospects in the Baltic States" in 69th EAGE Conference and Exhibitioon, Incorporating SPE EUROPEC, London, 2007, Extended Abstracts.

2. N. Alqahtani, F. Alzubaidi, R.T. Armstrong, P. Swietojanski and P. Mostaghimi, "Machine learning for predicting properties of porous media from 2d X-ray images", *Journal of Petroleum Science and Engineering*, Vol. 184, 2020, doi: <u>https://doi.org/10.1016/j.petrol.2019.106514</u>

3. R. Šliaupienė and S. Šliaupa, "Prospects of CO2 geological storage in deep saline aquifers of Lithuania and adjacent territories", *Geologija*. *Vilnius*, vol. 53, No. 3(75), pp. 121–133, 2011, ISSN 1392-110X.

4. S. Šliaupa and R. Šliaupiene, "Prospects of Geological Storage of CO2 in Lithuania" in *Baltic Carbon Forum*, October 2021.

5. S. Malik, P. Makauskas, V. Karaliute, R. Sharma, and M. Pal, "Assessing Long-term fate of geological CO2 storage in Lithuania: A machine learning approach for pore-scale processes and reservoir characterization" in *12th Trondheim Conference on CO2 Capture, Transport and Storage*, June 19-21, 2023.

6. P. Mostaghimi, M. J. Blunt and B. Bijeljic, "Computations of absolute permeability on micro-CT images", *International Association of Mathematical Geosciences*, 2012.

7. M. Pal, S. Malik, V. Karaliute, P. Makauskas, and R. Sharma, "Assessing the Feasibility of Carbon Capture and Storage Potential in Lithuanian Geological Formations: a Simulation-Based Assessment" in <u>84th EAGE Annual Conference & Exhibition</u>, June 2023, Volume 2023, pp. 1–5, <u>https://doi.org/10.3997/2214-4609.202310502</u>.

Thank you

